A heat sink (also commonly spelled heatsink) is a passive heat exchanger that transfers the heat generated by an electronic or a mechanical device to a fluid medium, often air or a liquid coolant, where it is dissipated away from the device, thereby allowing regulation of the device's temperature. In computers, heat sinks computer cooling to cool CPUs, GPUs, and some chipsets and RAM modules. Heat sinks are used with other high-power semiconductor devices such as power transistors and optoelectronics such as lasers and light-emitting diodes (LEDs), where the heat dissipation ability of the component itself is insufficient to moderate its temperature.
A heat sink is designed to maximize its surface area in contact with the cooling medium surrounding it, such as the air. Air velocity, choice of material, protrusion design and surface treatment are factors that affect the performance of a heat sink. Heat sink attachment methods and thermal interface materials also affect the die temperature of the integrated circuit. Thermal adhesive or thermal paste improve the heat sink's performance by filling air gaps between the heat sink and the heat spreader on the device. A heat sink is usually made out of a material with a high thermal conductivity, such as aluminium or copper.
Fourier's law of heat conduction shows that when there is a temperature gradient in a body, heat will be transferred from the higher-temperature region to the lower-temperature region. The rate at which heat is transferred by conduction, , is proportional to the product of the temperature gradient and the cross-sectional area through which heat is transferred. When it is simplified to a one-dimensional form in the x direction, it can be expressed as:
For a heat sink in a duct, where air flows through the duct, the heat-sink base will usually be hotter than the air flowing through the duct. Applying the conservation of energy, for steady-state conditions, and Newton's law of cooling to the temperature nodes shown in the diagram gives the following set of equations:
where
Using the mean air temperature is an assumption that is valid for relatively short heat sinks. When compact heat exchangers are calculated, the logarithmic mean air temperature is used.
The above equations show that:
Natural convection requires free flow of air over the heat sink. If fins are not aligned vertically, or if fins are too close together to allow sufficient air flow between them, the efficiency of the heat sink will decline.
The idea of thermal resistance of a semiconductor heat sink is an approximation. It does not take into account non-uniform distribution of heat over a device or heat sink. It only models a system in thermal equilibrium and does not take into account the change in temperatures with time. Nor does it reflect the non-linearity of radiation and convection with respect to temperature rise. However, manufacturers tabulate typical values of thermal resistance for heat sinks and semiconductor devices, which allows selection of commercially manufactured heat sinks to be simplified.Nello Sevastopoulos et al., National Semiconductor Voltage Regulator Handbook, National Semiconductor Corp., 1975, chapters 4, 5, 6.
Commercial extruded aluminium heat sinks have a thermal resistance (heat sink to ambient air) ranging from for a large sink meant for TO-3 devices, up to as high as for a clip-on heat sink for a TO-92 small plastic case. The popular 2N3055 power transistor in a TO-3 case has an internal thermal resistance from junction to case of . Type 2N3055 N-P-N Single Diffused Mesa Silicon Power Transistor data sheet, Texas Instruments, bulletin number DL-S-719659, August 1967, revised December 1971. The contact between the device case and heat sink may have a thermal resistance between , depending on the case size and use of grease or insulating mica washer.
Copper has excellent heat-sink properties in terms of its thermal conductivity, corrosion resistance, biofouling resistance, and antimicrobial resistance (see also Copper in heat exchangers). Copper has around twice the thermal conductivity of aluminium, around 400 W/(m·K) for pure copper. Its main applications are in industrial facilities, power plants, solar thermal water systems, HVAC systems, gas water heaters, forced air heating and cooling systems, geothermal heating and cooling, and electronic systems.
Copper is three times as dense and more expensive than aluminium, and copper is less ductile than aluminum. One-piece copper heat sinks can be made by skiving or milling. Sheet-metal fins can be soldered onto a rectangular copper body.
where
Fin efficiency is increased by decreasing the fin aspect ratio (making them thicker or shorter), or by using a more conductive material (copper instead of aluminium, for example).
To decrease the spreading resistance in the base of a heat sink:
Forghan, et al.Forghan, F., Goldthwaite, D., Ulinski, M., Metghalchi, M., 2001, Experimental and Theoretical Investigation of Thermal Performance of Heat Sinks, ISME May. have published data on tests conducted on pin fin, straight fin, and flared fin heat sinks. They found that for low air approach velocity, typically around 1 m/s, the thermal performance is at least 20% better than straight fin heat sinks. Lasance and EgginkLasance, C. J. M. and Eggink, H. J., 2001, A Method to Rank Heat Sinks in Practice: The Heat Sink Performance Tester, 21st IEEE SEMI-THERM Symposium. also found that for the bypass configurations that they tested, the flared heat sink performed better than the other heat sinks tested.
Generally, the more surface area a heat sink has, the better its performance. Real-world performance depends on the design and application. The concept of a pin fin heat sink is to pack as much surface area into a given volume as possible, while working in any orientation of fluid flow. Kordyban has compared the performance of a pin-fin and a straight-fin heat sink of similar dimensions. Although the pin-fin has 194 cm2 surface area while the straight-fin has 58 cm2, the temperature difference between the heat-sink base and the ambient air for the pin fin is , but for the straight-fin it was 44 °C, or 6 °C better than the pin fin. Pin fin heat sink performance is significantly better than straight fins when used in their optimal application where the fluid flows axially along the pins rather than only tangentially across the pins.
Heat transfer by radiation is a function of both the heat-sink temperature and the temperature of the surroundings that the heat sink is optically coupled with. When both of these temperatures are on the order of 0 °C to 100 °C, the contribution of radiation compared to convection is generally small, and this factor is often neglected. In this case, finned heat sinks operating in either natural-convection or forced-flow will not be affected significantly by surface emissivity.
In situations where convection is low, such as a flat non-finned panel with low airflow, radiative cooling can be a significant factor. Here the surface properties may be an important design factor. Matte-black surfaces radiate much more efficiently than shiny bare metal. A shiny metal surface has low emissivity. The emissivity of a material is tremendously frequency-dependent and is related to absorptivity (of which shiny metal surfaces have very little). For most materials, the emissivity in the visible spectrum is similar to the emissivity in the infrared spectrum; however, there are exceptions
In vacuum or outer space, there is no convective heat transfer, thus in these environments, radiation is the only factor governing heat flow between the heat sink and the environment. For a satellite in space, a surface facing the Sun will absorb a lot of radiant heat, because the Sun's surface temperature is nearly 6000 K, whereas the same surface facing deep space will radiate a lot of heat, since deep space has an effective temperature of only several Kelvin.
Two additional design factors also influence the thermal/mechanical performance of the thermal design:
Thermally conductive tape is one of the most cost-effective heat sink attachment materials.Azar, K, et al., 2008, "Thermally Conductive Tapes", can-dotape.com, accessed on 3/21/2013 It is suitable for low-mass heat sinks and for components with low power dissipation. It consists of a thermally conductive carrier material with a pressure-sensitive adhesive on each side.
This tape is applied to the base of the heat sink, which is then attached to the component. Following are factors that influence the performance of thermal tape:
The epoxy bond between the heat sink and component is semi-permanent/permanent. This makes re-work very difficult and at times impossible. The most typical damage caused by rework is the separation of the component die heat spreader from its package.
To assemble with a z-clip, attach one side of it to one of the anchors. Deflect the spring until the other side of the clip can be placed in the other anchor. The deflection develops a spring load on the component, which maintains very good contact. In addition to the mechanical attachment that the z-clip provides, it also permits using higher-performance thermal interface materials, such as phase change types.
Properly applied thermal interface materials displace the air that is present in the gaps between the two objects with a material that has a much-higher thermal conductivity. Air has a thermal conductivity of 0.022 W/(m·K) while TIMs have conductivities of 0.3 W/(m·K) and higher.
When selecting a TIM, care must be taken with the values supplied by the manufacturer. Most manufacturers give a value for the thermal conductivity of a material. However, the thermal conductivity does not take into account the interface resistances. Therefore, if a TIM has a high thermal conductivity, it does not necessarily mean that the interface resistance will be low.
Selection of a TIM is based on three parameters: the interface gap which the TIM must fill, the contact pressure, and the electrical resistivity of the TIM. The contact pressure is the pressure applied to the interface between the two materials. The selection does not include the cost of the material. Electrical resistivity may be important depending upon electrical design details.
The heat sink thermal resistance model consists of two resistances, namely the resistance in the heat sink base, , and the resistance in the fins, . The heat sink base thermal resistance, , can be written as follows if the source is a uniformly applied the heat sink base. If it is not, then the base resistance is primarily spreading resistance:
where is the heat sink base thickness, is the heat sink material thermal conductivity and is the area of the heat sink base.
The thermal resistance from the base of the fins to the air, , can be calculated by the following formulas:
The flow rate can be determined by the intersection of the heat sink system curve and the fan curve. The heat sink system curve can be calculated by the flow resistance of the channels and inlet and outlet losses as done in standard fluid mechanics text books, such as Potter, et al. and White.
Once the heat sink base and fin resistances are known, then the heat sink thermal resistance, can be calculated as:
Using the equations 5 to 13 and the dimensional data in, the thermal resistance for the fins was calculated for various air flow rates. The data for the thermal resistance and heat transfer coefficient are shown in the diagram, which shows that for an increasing air flow rate, the thermal resistance of the heat sink decreases.
CFD can give an insight into flow patterns that are difficult, expensive or impossible to study using experimental methods. Experiments can give a quantitative description of flow phenomena using measurements for one quantity at a time, at a limited number of points and time instances. If a full-scale model is not available or not practical, scale models or dummy models can be used. The experiments can have a limited range of problems and operating conditions. Simulations can give a prediction of flow phenomena using CFD software for all desired quantities, with high resolution in space and time and virtually any problem and realistic operating conditions. However, if critical, the results may need to be validated.
Material
Fin efficiency
Spreading resistance
Fin arrangements
Cavities (inverted fins)
Conductive thick plate between the heat source and the heat sink
Surface color
notably, certain metal oxides that are used as "selective surfaces".
Engineering applications
Microprocessor cooling
Attachment methods
Epoxy is more expensive than tape, but provides a greater mechanical bond between the heat sink and component, as well as improved thermal conductivity. The epoxy chosen must be formulated for this purpose. Most epoxies are two-part liquid formulations that must be thoroughly mixed before being applied to the heat sink, and before the heat sink is placed on the component. The epoxy is then cured for a specified time, which can vary from 2 hours to 48 hours. Faster cure time can be achieved at higher temperatures. The surfaces to which the epoxy is applied must be clean and free of any residue.
More expensive than tape and epoxy, wire form z-clips attach heat sinks mechanically. To use the z-clips, the printed circuit board must have anchors. Anchors can be either soldered onto the board, or pushed through. Either type requires holes to be designed into the board. The use of RoHS solder must be allowed for because such solder is mechanically weaker than traditional Pb/Sn solder.
Available for processors and ball grid array (BGA) components, clips allow the attachment of a BGA heat sink directly to the component. The clips make use of the gap created by the ball grid array (BGA) between the component underside and PCB top surface. The clips therefore require no holes in the PCB. They also allow for easy rework of components.
For larger heat sinks and higher preloads, push pins with compression springs are very effective. The push pins, typically made of brass or plastic, have a flexible barb at the end that engages with a hole in the PCB; once installed, the barb retains the pin. The compression spring holds the assembly together and maintains contact between the heat sink and component. Care is needed in selection of push pin size. Too great an insertion force can result in the die cracking and consequent component failure.
For very large heat sinks, there is no substitute for the threaded standoff and compression spring attachment method. A threaded standoff is essentially a hollow metal tube with internal threads. One end is secured with a screw through a hole in the PCB. The other end accepts a screw which compresses the spring, completing the assembly. A typical heat sink assembly uses two to four standoffs, which tends to make this the most costly heat sink attachment design. Another disadvantage is the need for holes in the PCB.
+ Summary of heat sink attachment methods
! Method
! Pros
! Cons
! Cost Very low Very low Low Low Moderate High
Thermal interface materials
+ Selection based on interface gap
!colspan=2 Interface gap values
! Products types available < 0.05 mm Thermal grease, epoxy, phase change materials 0.05–0.1 mm Phase change materials, polyimide, graphite or aluminium tapes 0.1–0,5 mm Silicone-coated fabrics > 0.5 mm Gap fillers + Selection based on dielectric strength
! Electrical insulation
! Dielectric strength
!colspan=2 Typical values
! Product types available N/A N/A Thermal grease, epoxy, phase-change materials, graphite, or aluminium tapes. Low Silicone coated fabrics, gap fillers High Polyimide tape + TIM application notes based on product type
! Product type
! Application notes
! Thermal performance ++++ ++++ ++++ +++ + ++
Light-emitting diode lamps
In soldering
Methods to determine performance
A heat transfer theoretical model
Experimental methods
Numerical methods
analysis package]] fan, predicted using a CFD analysis package]] fan, predicted using a CFD analysis package]]
See also
External links
|
|